|
||||
Pisum
Genetics |
2007—Volume
39 |
Research
Papers |
||
|
||||
Relationship between different fasciated lines of
pea
Sinjushin, A.A. and Gostimskii,
S.A. Gen. Dept., Biol. Faculty of Moscow State Univ., Moscow,
Russia
Introduction Although data on genetic control
of fasciation in pea (Pisum sativum L.) appeared together with
genetics
itself (5), some aspects of it remain unclear. Until recently, even the number of genes involved in the development of this trait was under discussion: the hypothesis of monogenic control (5) was in controversy with one proposing the existence of two polymeric genes (2). At present, the former seems more probable, being supported by numerous experiments (4). The Fa locus proposed to be identical to that studied by Mendel, is localized on linkage group (LG) IV (2). Nevertheless, a few additional genes are known to cause fasciation: Fas (LG III, 1), Fa2 (LG V, 12), Nod4 (LGV, 8), and ,Sym28 (no linkage data, 7).The two latter also take part in the nodulation process. Currently, a wide range of
fasciated mutants, lines, recombinants and cultivars of pea are known.
Their
origin in some cases is unclear and samples from different germplasm collection may have different designations, obscuring the genetic relationship between them. For this reason, the relation between different fasciata lines needs to be investigated to finally determine the number of genes influencing this character, and to avoid synonyms. In addition, further study of fasciation in pea is needed, not only for practical purposes (some highly productive fasciated pea cultivars exist, reviewed in (11)) but also to solve the fundamental problem of genetic control of stem apical meristem (SAM) in higher plants. Materials and
Methods
The following fasciated pea lines
from the collection of Genetics Department of Moscow State
University
(MSU) served as the plant material for the current study: 'Shtambovy' mutant originating from 'Nemchinovsky' cultivar via ethylmethane sulfonate treatment (6), 'Rosacrone' cultivar (provided by Vavilov Institute of Plant Industry, St. Petersburg, Russian Federation), 'Lupinoid' line from All-Russia Research Institute of Legumes and Groats Crops (Orel, Russian Federation), lines from John Innes Collection (Norwich, UK) (JI 5, JI 2671, JI 2771), and P 64 (sym28) from the collection of All-Russia Research Institute of Agricultural Microbiology (Pushkin, Russian Federation). The lines and F1 hybrids were planted in open field conditions of Skadovskii Biological Station of MSU (Zvenigorod, Moscow District). Quantitative trait measurements were taken on growing plants and then processed with usage of Statistica 6 software package (Statsoft, Inc., Tulsa, OK, U.S.A.). The following characteristics were compared: number of the first node with clustered leaves (the phyllotaxis abnormalities reflect stem apical meristem size, 9) and width of internode preceding the node of flower initiation (NFI). PCR-based microsatellite markers
were used to confirm the hybrid origin of some F1
plants (when no
morphologic markers' segregation confirmed it). The primer sequences and conditions of PCR were chosen according to those described in Lorindon et al. (3). The restriction products were separated via electro-phoresis in agarose gel (Amresco) and then stained with ethidium bromide and visualized under UV-light. Results and
Discussion
Table 1 represents the results of
allelism tests based on the phenotype of F1
hybrids of clearly confirmed origin (Fig. 1). It is evident that three genes are responsible for fasciation inheritance in the lines. Studied lines 'Shtambovy' and JI 2771 are mutants at a gene on LG III (10) which is the only known fasciata gene on LG III and thus needs to be designated Fas, as has been discussed in work cited previously. Currently, however, line JI 2771 is designated as fas-2 (Catalogue of Pisum Genetic Stock in John Innes Centre, http://www.jic.ac.uk/ germplas/pisum/pgs2.txt), which seems improper. |
||||
|
||||
16 |
||||
|
||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Pisum
Genetics |
2007—Volume
39 |
Research
Papers |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Table 1. Results of allelism test-crosses between the lines
examined. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Key: a, allelic; n/a, nonallelic; dash, cross not made or
data absent. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lines 'Rosacrone',
'Lupinoid', JI 5 ('Mummy Pea'), and JI 2671 are all allelic. The fasciation in them is caused by gene Fa localized on LG IV, as JI 5 ('Mummy pea', syn. WL 6) is regarded as type line for fa (11) identical to one described in Mendel's work (2, 5). Line JI 2671 also needs to be designated as fa instead of fas. Line P 64 shows no
allelism
with any of the other mutants, but rather is homozygous at gene sym28 as stated in (7). The study of
quantitative |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
traits in fasciated
lines provides additional data confirming the relationship |
Fig. 1. Confirmation of
hybrid origin of F1 plants from cross between 'Shtambovy' and JI 2771 via amplification of AA122 microsatellite marker. Key: M, marker of molecular weight (100 bp + 1.5 Kb, Sibenzyme); 1, 'Shtambovy'; 2, JI 2771; 3-9, spectra of individual F hybrids. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
between fasciated lines (Fig.
2).
The two fas forms are characterized with strongly
expressed fasciation resulting in development of widely flattened main
stem and
phyllotaxis distortions, which can be clearly seen even in seedlings. Usually two or three leaves form in the third node, i.e. true (not scalar cataphylls) leaves exhibit abnormalities in their arrangement. In contrast, fa lines are weakly fasciated and features of stem flattening and clustering of leaves can be seen only at late stages of development. The line 'Lupinoid' has unusual leaf arrangement: the formation of leaf whorls is usually observed on the first nodes and then on 10-11th (and more). Such enhancement of fasciation expression can be explained by existence of modifying genes altering manifestation of fa in different recombinants. The stem and leaf arrangement in the P64 line (sym28) are also weakly affected. Such differences were seen even during observations in the very dry summer of 2007 when all features of fasciation were expressed weaker then usual due to drought stress. In conclusion, fasciation for the
lines studied is produced by three independent genes, and its
manifestation in different genotypes is phenotypically distinguishable. Certain changes in the designation of type lines are recommended. Further investigations on gene interactions including analysis of F2 and double mutants are needed to get more information on genetic control of SAM development in pea and higher plants in general. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
17 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||
Pisum
Genetics |
2007—Volume
39 |
Research
Papers |
||
|
||||
|
||||
Fig. 2. Scatterplot distribution of quantitative traits
in fasciated lines (explanation in text). |
||||
|
||||
Acknowledgment: The authors
would like to express their gratitude to Prof. Noel Ellis and Dr. Mike
Ambrose (John Innes
Centre), Dr. Viktor E. Tsyganov (All-Russia Research Institute of Agricultural Microbiology), and Dr. Anatoly N. Zelenov (All-Russia Research Institute of Legumes and Groats Crops) for kindly providing them with the seeds of fasciated lines. This study was supported by Russian Foundation for Basic Research (grant no. 07-04-00652). 1. Blixt, S. 1976. Agri Hort. Genet. 34:
83-87.
2. Lamprecht, H. 1952. Agri Hort. Genet. 10:
158-167.
3. Lorindon, K., McPhee, K., Morin, J. et al. 2005.
Theor. Appl. Genet. 111: 1022-1031.
4. Marx, G.A. and Hagedorn, D.J. 1962. Heredity 53:
31-43.
5. Mendel, G. 1866. Verh. Naturf. Ver. Brunn 4:
3-47.
6. Rehmatulla, A. and Gostimskii, S.A. 1976.
Biologicheskie nauki. 5: 107-112. In Russian.
7. Sagan, M. and Duc, G. 1996. Symbiosis 20:
229-245.
8. Sidorova, K.K. and Uzhintseva, L.P. 1995. Pisum
Genetics 27: 21.
9. Sinjushin, A.A. and Gostimsky, S.A. 2006. Russ.
J. Dev. Biol. 37: 375-381.
10. Sinjushin, A.A., Konovalov, F.A. and Gostimskii,
S.A. 2006. Pisum Genetics 38: 19-20.
11. Swiecicki, W.K. 2001. Pisum Genetics 33:
19-20.
12. Swiecicki, W.K. and Gawlowska, M.
2004. Pisum Genetics 36: 22-23. |
||||
|
||||
18 |
||||
|
||||