Genetic system controlling development of nitrogen-fixing nodules and arbuscular mycorrhiza

Borisov, A.Y., Jacobi, L.M. , Lebsky, V.K., Morzhina, E.V. , Tsyganov, V.E., Voroshilova, V.A. and Tikhonovich, I.A.

All-Russia Research Institute for Agricultural Microbiology
St. - Petersburg-Pushkin 8
Podbelsky Sh. 3, 189620, Russia
E-mail: biotec@peterlink.ru

 The first indications of an active role by the host plant in the establishment of endosymbiotic systems appeared many years ago. J.M. Vorhees (45) demonstrated that some soybean cultivars are not nodulated with certain strains of nodule bacteria. Later Z.G. Razumovskaia (37) and L.I. Govorov (10) found pea varieties originating from Afghanistan which did not form nodules with the strains of nodules bacteria isolated from European soils whereas other peas do. In the sixties T.A. Lie began his work on identification of pea symbiotic genes based on natural genetic polymorphism and eventually identified the first symbiotic genes (named sym-genes) controlling strain specific nodulation (27,28). In addition to several other natural mutations, many symbiosis mutants have been induced by experimental mutagens (1,5,7,14,15,40,41).

The combined efforts at generating and isolating pea symbiotic mutants have produced more than two hundred independently obtained symbiotic mutant lines (Table 1). Complementation analysis of more than one hundred of these symbiotic mutants, also performed in various labs, demonstrated the existence of more than forty pea symbiotic genes (Table 2).

 Table 1. Pea (Pisum sativum L.) symbiotic mutants obtained in different genotypes.1


--------Mutant phenotypes--------

Genotypes (Author(s), Country)

Nod-

Nod+/-

Fix-

Nod++

Total

RONDO (E. Jacobsen et al., The Netherlands)

3

8

1

1

13

Sparkle (T.A. LaRue et al., USA)

11

12

4

0

27

Finale (K.J. Engvild, Denmark)

22

1

11

1

35

Frisson (G. Duc, M. Sagan, France)

19

1

19

25

64

Ramonsky-77 (K.K. Sidorova, L.P. Uzhintseva, Russia)

1

0

1

1

3

Sprint-2 (A.Y. Borisov et al., Russia)

3

0

1

0

4

SGE (V.E. Tsyganov et al., Russia)

20

3

33

1

57

Total

79

25

70

29

203


1Compiled data from G. Duc & M. Sagan, personal communication, Tsyganov et al., unpublished results and data published in literature.

 

Table 2. Pea (Pisum sativum L.) symbiotic genes identified in the course of studying root nodule formation.


Gene
symbols
Pheno-
types
Mutant lines References
Sym1=sym2 Nod+/- JI 1357 (registered type line) 12,16,24,27
sym3 Fix- JI 1357 (registered type line) 12
Sym4 Nod- JI 261 28
sym5 Nod- E2, R88, E77, E111, E143, E166, E169 15
sym6 Fix- JI 1357 (registered type line) 29,30
sym7 Nod- E69, N12, RisNod14 15,21, Duc, Sagan, p.c.
sym8=sym20 Nod- E14, R19, R25, R80, RisNod10, RisNod13, RisNod19, RisNod21, RisNod25, Sprint-2Nod--1, Sprint-2Nod--2 2,7,21, Duc, Sagan, p.c.
sym9 Nod- R72, P54 5,21, Duc, Sagan, p.c.
sym10 Nod- P5, P7, P8, P9, P10, P56, RisFixG 5,7, Duc, Sagan, p.c.
sym11 Nod- N24 21
sym12 Nod+/- K5 35
sym13 Fix- E135f, E136, P58 20,39
sym14 Nod- E135n, SGENod-2 20,43
sym15 Fix- E151 21
sym16 Fix- R50 21
sym17 Nod+/- R82 21
sym18 Nod+/- E54 25
sym19 Nod- P4, P6, P55, NEU5, NMU1, RisNod2, RisNod7, RisNod16, RisNod20 5,19,47, Duc, Sagan, p.c.
sym21 Nod+/- E132 32
Sym22 Nod+/- JI 1794 26
sym23 Fix- P59 5, Duc, Sagan, p.c.
sym24 Fix- P60 5, Duc, Sagan, p.c.
sym25 Fix- P14, P17, P19, P61 5, Duc, Sagan, p.c.
sym26 Fix- P63, RisFixM, RisFixT 5,7, Duc, Sagan, p.c.
sym27 Fix- P12, RisFixQ 5,7, Duc, Sagan, p.c.
sym28 Nod++ P64, P77 38
sym29 Nod++ P87, P88, P89, P90, P91, P93, P94 38
sym30 Nod- P1, P2, P3, P53, RisNod6, RisNod9, RisNod22 5,7, Duc, Sagan, p.c.
sym31 Fix- Sprint-2Fix- 1,3
sym32 Fix- RisFixL, O 7, Duc, Sagan, p.c.
sym33 Fix- RisFixU, SGEFix--2 7,44, Duc, Sagan, p.c.
sym34 Nod- RisNod1, RisNod3, RisNod23, RisNod30 7, Duc, Sagan, p.c.
sym35 Nod- RisNod8, SGENod--1, SGENod--3 7,43, Duc, Sagan, p.c.
sym36 Nod- RisNod24, RisNod26 7, Duc, Sagan, p.c.
sym37 Nod+/- RisNod4 7, Duc, Sagan, p.c.
sym38 Nod- RisFixF, SGENod--4, SGENod--8 7,42, Duc, Sagan, p.c.
sym39 Nod+/- P57 40, Duc, Sagan, p.c.
sym40 Fix- SGEFix--1 44, Duc, Sagan, p.c.
nod1, nod2 Nod+/- Parvus 8
nod3 Nod+/- nod3, P79, RisFixC 7,14,38
Totals      

41

4

108

 

A majority of these genetically characterized mutants have been involved in phenotypic characterization aimed at identification of nodule developmental stage blocked by mutations in certain identified genes (1,2,11,20,31-36,39,40,43,44). This characterization permitted the subdivision of nodule morphogenesis into eight discrete developmental stages (Table 3). New nodule developmental stages controlled by plant genes were discovered (44), forcing the modification of the previously used system of phenotypic codes describing the process of symbiotic nodule development (4,44). At present, the sequence of nodule developmental stages is defined as follows: (i) root hair curling (Hac), (ii) infection thread growth initiation (Iti), (iii) infection thread growth inside root hair (Ith), (iv) infection thread growth inside root tissue (Itr), (v) infection thread growth inside nodule tissue (Itn), (vi) infection droplet differentiation (Idd), (vii) bacteroid differentiation (Bad) and (viii) nodule persistence (Nop).

Table 3. Pea (Pisum sativum L.) genes controlling developmental stages of root nodules and arbuscular mycorrhiza


Hac

------------Itf------------

------Bar------

Bad

Nop

Hac

Iti

Ith

Itr

Itn

Idd

Bad

Nop


sym8

sym7

sym2

sym5

sym33

sym40

sym31

sym13

sym9

sym14

sym36

sym34

{RisFixA}

sym32

sym25

sym10

sym35

sym26

sym19

{K24}

sym27

sym30

{KN1}

{FN1}

{KN10}

{RisFixK}

{RisFixN}

Myc-1

Myc-2

Myc+/-


  The late eighties produced the first reports that certain symbiotic mutants with abnormalities of nodule development were simultaneously blocked in arbuscular mycorrhiza (AM) formation (6). Further investigations in pea using symbiosis mutants has revealed at least three AM developmental stages (Table 3) controlled by at least eight plant genes (of those involved in nodule formation). These stages are (i) infecting hyphae growth from appressorium (Myc1), (ii) arbuscule formation (Myc2) and (iii) intensity of host plant root colonization (Myc+/-) (9,23).

In sum, the data reveal that pea is currently one of the best endowed plant species for studying developmental processes leading to formation of two endosymbioses: nitrogen-fixing nodules and arbuscular mycorrhiza.

  Acknowledgement: This work was supported by grants RFBR (97-04-50033, 98-04-49883), Volkswagen (I/72 935) and NATO (HTECH.LG 971210), INTAS (96-1371).

1. Borisov, A.Y., Morzhina, E.V., Kulikova, O.A., Tchetkova, S.A., Lebsky, V.K. and Tikchonovich, I.A. 1992. Symbiosis. 14:297-313.
2. Borisov, A.Y., Rozov, S.M., Tsyganov, V.E., Kulikova, O.A., Kolycheva, A.N., Yakobi, L.M., Ovtsyna, A.O. and Tikhonovich, I.A. 1994. Russian J. Genet. 30(11):1284-1292.
3. Borisov, A.Y., Rozov, S.M., Tsyganov, V.E., Morzhina, E.V., Lebsky, V.K. and Tikhonovich, I.A. 1997. Mol Gen Genet. 254:592-598
4. Caetano-Anolles, G. and Gresshoff, P.M. 1991. Annu. Rev. Microbiol. 45:345-382.
5. Duc, G. and Messager, A. 1989. Plant Sci. 60: 207-213.
6. Duc, G., Trouvelot, A., Gianinazzi-Pearson, V. and Gianinazzi, S. 1989. Plant Sci. 60:215-222.
7. Engvild, K.J. 1987. Theor. Appl. Genet. 74:711-713.
8. Gelin, O. and Blixt, S. 1964. Agri. Hort. Genet. 22:149-159.
9. Gianinazzi-Pearson, V. 1996. Plant Cell. 8:1871-1883.
10. Govorov L.I. 1937. In Flora of cultivated plants. IV. Grain Leguminosae, Moscow, Leningrad, pp. 231-236. (In Russian).
11. Guinell, F.C. and LaRue, T.A. 1991. Plant Physiol. 97:1206-1211.
12. Holl, F.B. 1975. Euphytica. 24:767-770.
13. Jacobsen, E. 1984. Plant Soil. 82: 427-438.
14. Jacobsen, E. and Feenstra, W.J. 1984. Plant Sci. Letters. 33:337-344.
15. Kneen, B.E. and LaRue T.A. 1984. J. Heredity. 75: 238-240.
16. Kneen, B.E. and LaRue, T.A. 1984. Heredity. 52:383-389.
17. Kneen, B.E. and LaRue, T.A. 1986. PNL 18:33.
18. Kneen, B.E., and LaRue, T.A. 1987. PNL 19:17.
19. Kneen, B.E. and LaRue, T.A. 1988. Plant Sci. 58:177-182.
20. Kneen, B.E., LaRue, T.A., Hirsch, A.M., Smith, C.A. and Weeden, N.F. 1990. Plant Physiol. 94:899-905.
21. Kneen, B.E. and LaRue, T.A. and Weeden, N.F. 1989. PNL 21:31.
22. Kneen, B.E., Weeden, N.F. and LaRue, T.A. 1994. J. Heredity. 85:129-133.
23. Kolycheva, A.N., Jacobi, L.M., Borisov, A.Y., Filatov, A.A., Tikhonovich, I.A. and Muromtsev, G.S. 1993. Pisum Genet. 25:22.
24. Kozik, A.V., Heidstra, R., Horvath, B., Kulikova, O.A., Tikhonovich, I.A., Ellis, T.H.N., van Kammen, A. and Bisseling, T. 1995. Plant Sci. 108:41-49.
25. LaRue, T.A., Temnykh, S., Weeden, N.F. 1996. Plant Soil. 180:191-195.
26. LaRue, T.A. and Weeden, N.F. 1992. Pisum Genet. 24:5-12.
27. Lie, T.A. 1971. Plant Soil. 34: 751-752.
28. Lie, T.A. 1984. Plant Soil. 82: 415-425.
29. Lie, T.A., Goktan, D., Engin, M., Pijnenborg, J. and Anlarsal, E. 1987. Plant Soil. 100:171-181.
30. Lie, T.A. and Timmermans, P.C.J.M. 1983. Plant Soil. 75:449-453.
31. Markwei, C.P. and LaRue, T.A. 1992. Canad. J. Microbiol. 38:548-554.
32. Markwei, C.P. and LaRue, T.A. 1997. Physiologia Plantarum. 100:927-932.
33. Morzhina, E.V., Tsyganov, V.E., Borisov, A.Y., Lebsky, V.K., and Tikhonovich, I.A. 1999. submitted to Plant Sci.
34. Novak, K., Pesina, K., Nebesarova, J., Skrdleta, V., Liza, L. and Nasinec V. 1995. Ann. Bot. 76:303-313.
35. Postma, J.G., Jacobsen, E. and Feenstra W.J. 1988. J. Plant Physiol. 132:424-430.
36. Postma, J.G., Jager, D., Jacobsen, E. and Feenstra, W.J. 1990. Plant Sci. 68:151-161.
37. Razumovskaja, Z.G. 1937. Mikrobiologija. 6:321-328. (In Russian).
38. Sagan, M. and Duc, G. 1996. Symbiosis. 20:229-245.
39. Sagan, M., Huguet, T., Barker D. and Duc, G. 1993. Plant Sci. 95: 55-66.
40. Sagan, M., Huguet, T. and Duc, G. 1994. Plant Sci. 100:59-70.
41. Sidorova, K.K. and Uzhintseva, P. 1992. Soviet Genet. 28:494-500.
42. Tsyganov, V.E., Borisov, A.Y., Rozov, S.M. and Tikhonovich, I.A. 1994. Pisum Genet. 26:36-37.
43. Tsyganov, V.E., Voroshilova, V.A., Kukalev, A.S., Jacobi, L.M., Azarova, T.S., Borisov, A.Y. and Tikhonovich, I.A. 1999. Russian J. Genet. 35(3):352-360.
44. Tsyganov, V.E., Morzhina, E.V., Stefanov, S.Y., Borisov, A.Y., Lebsky, V.K. and Tikhonovich, I.A. 1998. Mol. Gen. Genet. 256:491-503.
45. Vincent, J.M. 1980. In Nitrogen fixation. University Park press, Baltimore, 2:103-129.
46. Vorhees, J.M. 1915. J. Am. Soc. Agron. 7:159.
47. Weeden, N.F., Kneen, B. and LaRue, T.A. 1990. In Nitrogen Fixation: Achievements and Objectives. Chapman and Hall, New York, London, pp. 323-330.