A CHLOROPHYLL MUTANT WITH TWO SITES OF EXPRESSION

Marx, G. A. NYS Agricultural Experiment Station, Geneva, NY USA

In 1977 one F, population among several from the same cross contained some abnormal plants with variegated or mottled leaves. Other plants in the same population showed evidence of another, possibly different, disorder marked by a diffuse paling of the leaves due to a reduction in chlorophyll, principally in the central portion of the leaflets (Fig. 1). The affected leaves were rarely, if ever, totally devoid of chlorophyll and not all leaves were affected, so most mutant plants survived and produced seeds.

All surviving F2 plants were progeny tested. The F3 progenies were variously composed of seedlings that were normal, those with variegation and those with the reduction in chlorophyll. Reduced fertility was common. Selection was practiced in these F3 progenies and eventually lines were developed which exhibited the chlorophyll condition without the variegation. The selection process also led to improved fertility. It also became apparent during the selection process (through Fg) that the expression of the chlorophyll disorder varied considerably. Field-grown plants and those grown in silica sand expressed symptoms early in the seedling stage and often a reduction in chlorophyll was evident on all leaves produced thereafter. In one instance, however, greenhouse-grown plants showed chlorosis of a single leaf borne at the 5-6 node stage of development. Occasionally some inbred plants derived from mutant plants failed to produce symptoms at all. Later in the course of inbreeding and selection it was noted that affected plants expressed -a second more consistent and characteristic symptom: the pods exhibited irregular yellow stripes along the adaxial suture (Fig. 2).

- Fig. 1. Phenotypic expression on leaves of plants carrying a newly isolated chlorophyll mutant.
- Fig. 2. Phenotypic expression on pods of plants carrying same mutant shown in Fig. 1 (color photo converted to black and white.

34 RESEARCH REPORTS

Once the lines had been selected for near normal fertility and consistent mutant expression, they were used in exploratory crosses with other lines in an attempt to localize the mutant. Table 1 presents the segregation of the mutant in F2's in which no linkage was noted. There was a decided deficiency of mutant plants in these populations. Twenty-one normal green segregants from this F2 population were progeny tested. Twelve progenies segregated, giving a collective ratio of 201 normal : 48 chlorotic. Again, a deficiency of mutants was evident. This was not the case, however, in another population in which the chlorophyll mutant showed linkage with wa on chromosome 2, the single gene segregation ratios for the marker and mutant alike being very close to 3:1 (first pop., Table 2). The calculated percent recombination in the repulsion phase cross was 18.7+/-6. The two CrO plants recovered from that F2 were then grown in F3 and used as parents in coupling phase crosses. The results (second pop., Table 2) verified the linkage between the chlorophyll mutant and wa, but once again there was a significant deficiency of mutant plants. The marker gene, wa, also showed a deficiency.

Table 1. Segregation in F_2 for normal green and chlorotic plants.

	Number						
Population	Normal	Chlorotic	Total				
B279-236-254	333	68	401				
$X^{2}[3:1] = 13.8***$							

Table 2. Joint segregation for an unnamed chlorophyll mutant and wa in F₂ of two crosses, one in repulsion and the other in coupling.

			Wa chlor	wa Chlor	wa chlor	Total	Chi-square		%
	Phase	Wa Chlor					Wa-wa	Chlor-chlor	Recomb.
B279-219-235	R	115	57	53	2	227	NS	NS	18.7±6
B280-769-792	С	462	29	39	84	614	8.08**	14.96***	13.2±2-1
17 Linkage cal	culated	by Produc	t Method s	and not add	usted for	dicturk	ances i	n cingle gene	mation

Table 2. Joint segregation for an unnamed chlorophyll mutant and wa in F, **of** two crosses, one in repulsion and the other in coupling.

							Chi-square		Λ	
	Phase	Wa Chlor	Wa chlor	wa Chlor	wa chlor	Total	Wa-wa	Chlor-chlor	Recomb.	
B279-219-235	R	115	57	53	2	227	NS	NS	18.7*6	
B280-769-792	С	462	29	39	84	614	8.08**	14.96***	1 3 . 2 ± 2 - ′	
-^Linkage calcul	ated by	Product Met	nod and not	adjusted f	or disturband	es in si	ngle gen	e ratios.		
Naming of th	nis mu	tant wil	l be def	erred un	til Dr. B	lixt d	compare	es the pher	10-	
type with c	other	chloroph	yll muta	ants in 1	his colle	ction	and co	ompletely a	excludes	
the possibi	lity	that the	mutant	has not	been pre	viousl	y isol	ated. Ove	erall,	
this mutant	has	a number	of virt	cues fro	m a genet	ic and	physi	ological p	point	
of view. I	The mu	tant sho	ws rathe	er clear	-cut expr	ession	in th	ne seedling	g stage	
so it has v	zalue	as a see	dling ma	arker. 1	Mutant ex	pressi	on oco	curs during	g ontogeny	
and express:	ion is	separat	ed with	respect	to time,	space	e, and	tissue.	Also,	
mutant expr	ession	is subj	ject to	consider	able envi	ronmer	ntal v	ariation,	suggesting	
that phenot	ypic e	expressio	on could	be expe	rimentall	y mani	pulate	ed in the	process	
of seeking	an und	_ lerstandi	ng of i	ts physi	ologic ba	sis.	Altho	ugh chloro	- phvll	

is reduced, mutant plants are capable of surviving and producing seeds. Finally, the fact that the mutant has been localized adds to its value.