Table 2. Ranking of phenotypes after two generations of minimal and intense competition.

				Intense compe	etition		
	Minimum comp	etition		(corrected)			
Rank	Phenotype	00	Rank	Phenotype	00		
1	+ + -	33.7	1	+ + -	24.2		
2	+ + +	22.2	2	+ + +	23.0		
3	- + -	13.9	5	+	16.2		
4	+ - +	11.9	4	+ - +	15.3		
5	+	11.7	3	- + -	10.2		
6	- + +	4.8	6	- + +	9.2		
7		1.2	7		1.9		
8	+	0.4	8	+	0		

* *

Spearman rank correlation (r) = .905

The results were tested by standard Chi-square techniques and were found significant at the .001 level.

DESYNAPTIC ALLELIC PEA MUTANTS

Gostimski, S. A. and T. A. Ezhova Moscow State University, USSR

Two chlorophyll-mutant lines which were produced from treatment of seeds with EI (line 9) and EMS (line 12) also were found to contain meiotic mutations. These mutations seem to have arisen simultaneously with the chlorophyll mutations in the initial cells, following mutagen treatment of seeds.

Study of meiosis of meiotic mutants revealed that mutant genes in both lines do not influence the process of conjugation of chromosomes in zygotenepachytene cells, but disturb chiasma formation, though to a different extent. As a result of this disturbance, both mutant lines developed univalents in the first metaphases, laggards at anaphases, high pollen sterility, and slightly reduced seed production (Table 1).

Line	Metaphases 1		Anaphases and telophases 1						Pollen		
	Total	With	With univalents	Total no.	Wi	th laggards	With	n bridges	With	fragments	sterility %
	no. N	No.			No.	06	No.	%	No.	%	
Capital	236	6	2.5+1.0	279	4	1.4+0.7	2	0.7+0.5	8	2.9+1.0	1.9+0.3
9	702	404	57.5+1.9***	704	227	32.2+1.8***	10	1.4+0.5	7	1.0+0.4	54.2+1.0
12	586	443	75.6+1.8***	829	451	54.4+1.7***	10	1.2+0.4	4	0.5+0.1	81.4+2.3

Table 1. Analyses of meiosis of mutant lines

The differences between means of initial line and mutants are significant *P >0.95; **P >0.99; ***P >0.999

All F1 hybrids from crossing of desynaptic mutants (lines 9 x 12) had a high percentage of sterile pollen (from 33.0 to 76.8%). Among 125 F₂ plants from cross 9 x 'Capital' (initial variety), 98 plants were fertile and 27 plants were semi-sterile ($X^{*}_{(3+1)} = 0.77^{**}$). The distribution among 47 F₂ plants from cross 12 x Capital was:*33 fertile, 14 semi-sterile ($X^{*}_{(3+1)} = 0.57^{**}$). We therefore conclude that the desynaptic mutations in lines 9 and 12 were recessive mutations of the same gene.

In the progenies from our desynaptic mutants a few trisomies and one triploid were observed (Fig.l).

Fig. 1. Karyotype of triploid from line 9.